Binomial Heaps

Where We're Going

« Binomial Heaps (IToday)

« A simple, flexible, and versatile priority
queue.

 Lazy Binomial Heaps (Today)

* A powertul building block for designing more
advanced data structures.

 Fibonacci Heaps (Tuesday)

« A famous and theoretically excellent priority
queue.

Review: Priority Queues

Priority Queues

» A priority queue is a data
structure that supports
these operations:

* pq.enqueue(v, k), which
enqueues element v with
key Kk;

* pq.find-min(), which
returns the element with the
least key; and

* pq.extract-min(), which
removes and returns the
element with the least key.

* They’'re useful as building
blocks in a bunch of
algorithms.

s TN EN BN BN BN BN BN BN BN BN BN BN BN BN BN SN B ay

Kilimanjaro
5,859
Mt. Sidley
Mt. Giluwe
4,285
4,368

Picode Orizaba

--------------------'

Binary Heaps

* Priority queues are often implemented as binary heaps.

* enqueue and extract-min run in time O(log n);
find-min runs in time O(1).

 These heaps are surprisingly fast in practice. It’s tough
to beat their performance!

* d-ary heaps outperform binary heaps for well-tuned
values of d, and otherwise only sequence heaps are
known to specifically outperform this family.

* (Is this information incorrect as of 20257 Let me know
and I'll update it.)

* In that case, why do we need other heaps?

Priority Queues in Practice

« Many graph algorithms directly rely on priority queues
supporting extra operations:

« meld(pq:1, pqz): Destroy pq: and pgz2 and combine their elements
into a single priority queue. (MSTs via Cheriton-Tarjan)

 pg.decrease-key(v, k'): Given a pointer to element v already in
the queue, lower its key to have new value k'. (Shortest paths
via Dijkstra, global min-cut via Stoer-Wagner)

* pq.add-to-all(Ak): Add Ak to the keys of each element in the
priority queue, typically used with meld. (Optimum branchings
via Chu-Edmonds-Liu)

* In lecture, we'll cover binomial heaps to efficiently support
meld and Fibonacci heaps to efficiently support meld and
decrease-Kkey.

* You'll design a priority queue supporting meld and add-to-
all on the next problem set.

Meldable Priority Queues

Meldable Priority Queues

» A priority queue supporting the meld operation is
called a meldable priority queue.

« meld(pq:, pqz) destructively modifies pg: and pg-

and produces a new priority queue containing all
elements of pg: and pq-.

Efficiently Meldable Queues

« Standard binary heaps do not efficiently
support meld.

 Intuition: Binary heaps are complete binary
trees, and two complete binary trees cannot
easily be linked to one another.

What things can be combined together
efficiently?

Adding Binary Numbers

* Given the binary representations of two
numbers n and m, we can add those
numbers in time O(log m + log n).

Intuition:
Writing out n in
any “reasonable”
base requires
O(log n) digits.

Adding Binary Numbers

* Given the binary representations of two
numbers n and m, we can add those
numbers in time O(log m + log n).

1

1
1

T T N T

1
0
1
0

Ol =
—= | —_= O

+
1 O

A Different Intuition

 Represent n and m as a collection of “packets” whose
sizes are powers of two.

 Adding together n and m can then be thought of as
combining the packets together, eliminating duplicates

16
| KIR

+

Building a Priority Queue

« Idea: Store elements in “packets” whose sizes are
powers of two and meld by “adding” groups of packets.

3

)

oal

0O

)%

06

22 85128

90006
(=)

Building a Priority Queue

« What properties must our packets have?

* Sizes must be powers of two.
* Can efficiently fuse packets of the same size.
* Can efficiently find the minimum element of

each packet.
© 0000

QOO O

o)

Inserting into the Queue

« If we can efficiently meld two priority queues, we
can efficiently enqueue elements to the queue.

* Idea: Meld together the queue and a new queue
with a single packet.

@000
DQO00O) D

Time required:
O(log n) fuses.

Deleting the Minimum

* Our analogy with arithmetic breaks down when we try
to remove the minimum element.

« After losing an element, the packet will not necessarily
hold a number of elements that is a power of two.

QOO O

o)

Deleting the Minimum

» If we have a packet with 2% elements in it and
remove a single element, we are left with 2% - 1
remaining elements.

 Fun fact: 2k -1 =204+ 21 4+ 22 + ... + 2K,

* Idea: “Fracture” the packet into k smaller
packets, then add them back in.

O -

o)

Fracturing Packets

 We can extract-min by fracturing the packet
containing the minimum and adding the fragments

back in.

 Runtime is O(log n) fuses in meld, plus fracture cost.

41 NEE)

O -
+ 06

O JON)

Building a Priority Queue

 What properties must our packets have?

« Size is a power of two.
« Can efficiently fuse packets of the same size.
« Can efficiently find the minimum element of each packet.

» Can efficiently “fracture” a packet of 2* nodes into
packets of 29, 21, 22, 23, ..., 2k nodes.

* Question: How can we represent our packets to support
the above operations efficiently?

Propose a solution!

https://cs166.stanford.edu/pollev

https://cs166.stanford.edu/pollev

Binomial Trees

A binomial tree of order Kk is a type of tree recursively
defined as follows:

A binomial tree of order Kk is a single node whose
children are binomial trees of order o0, 1, 2, ..., k - 1.

e Here are the first few binomial trees:

0 B 3
0 0 2 10
binomial treee? Look || (0 1 0 0

across the layers of
these trees and see if

you notice anything! Q

Binomial Trees

« What properties must our packets have?

 Size must be a power of two. Vv
 Can efficiently fuse packets of the same size. v
 Can efficiently find the minimum element of each packet. v

« Can efficiently “fracture” a packet of 2% nodes into packets
of 20, 21, 22, 23, .., 2kl nodes. Vv

2 7
4

CRRC)

The Binomial Heap

A binomial heap is a collection of heap-ordered
binomial trees stored in ascending order of size.

* Operations defined as follows:

 meld(pqi, pqz): Use addition to combine all the trees.

- Fuses O(log n + log m) trees. Cost: O(log n + log m). Here,
assume one binomial heap has n nodes, the other m.

 pg.enqueue(v, k): Meld pg and a singleton heap of (v, k).
- Total time: O(log n).

* pq.find-min(): Find the minimum of all tree roots.
- Total time: O(log n).

 pq.extract-min(): Find the min, delete the tree root, then
meld together the queue and the exposed children.

- Total time: O(log n).

E
52 3
76 4

Draw what happens if we enqueue the numbers
1, 2, 3,4, 5,06, 7,8, and 9 into a binomial heap.

Draw what happens after performing an
extract-min in this binomial heap.

Where We Stand

e Here’s the current
scorecard for the
binomial heap.

e This is a fast,
elegant, and
clever data
structure.

* Question: Can we
do better?

Binomial Heap

 enqueue: O(log n)
* find-min: O(log n)
* extract-min: O(log n)

 meld: O(log m + log n).

Time-Out for Announcements!

Problem Set Four

* Problem Set Three was due today at 1:00PM.

 Need more time? Use a late day to extend the deadline
by 24 hours, or two late days to extend it by 48 hours.

* Problem Set Four (Balanced Trees) goes out
today. It’s due on Tuesday, May 13%* at 1:00PM.

* Play around with balanced binary search trees and
data structure isometries.

« Use augmented trees to solve problems much faster
than seems feasible at first glance.

* As usual, ping us if you have any questions!

Back to CS1606!

Where We Stand

« Theorem: No
comparison-based
priority queue structure
can have enqueue and
extract-min each take
time o(log n).

 Proof: Suppose these
operations each take
time o(log n). Then we
could sort n elements by
perform n enqueues
and then n extract-
mins in time o(n log n).
This is impossible with
comparison-based
algorithms. W

Binomial Heap

 enqueue: O(log n)
* find-min: O(log n)
* extract-min: O(log n)

 meld: O(log m + log n).

Where We Stand

« We can’t make both
enqueue and extract-
min run in time o(log n).

e However, we could
conceivably make one of
them faster.

* Question: Which one
should we prioritize?

* Probably enqueue,
since we aren’t
guaranteed to have to
remove all added items.

 Goal: Make enqueue
take time O(1).

Binomial Heap

 enqueue: O(log n)
* find-min: O(log n)
* extract-min: O(log n)

 meld: O(log m + log n).

Where We Stand

 The enqueue
operation 1s
implemented in
terms of meld.

 If we want
enqueue to run
in time O(1),
we’ll need meld

to take time O(1).

« How could we
accomplish this?

Binomial Heap

* enqueue: O(log n)

* find-min: O(log n)

* extract-min: O(log n)
 meld: O(log m + log n).

Thinking With Amortization

Refresher: Amortization

 In an amortized efficient data structure, some operations
can take much longer than others, provided that
previous operations didn’t take too long to finish.

« Think dishwashers: you may have to do a big cleanup at
some point, but that’s because you did basically no work
to wash all the dishes you placed in the dishwasher.

A

work

time

Lazy Melding

* Consider the following lazy melding approach:

To meld together two binomial heaps,
just combine the two sets of trees together.

* Intuition: Why do any work to organize keys if
we're not going to do an extract-min? We’ll worry
about cleanup then.

3 @@@@@@
4 8 9

Lazy Melding

* If we store our list of trees as circularly, doubly-linked
lists, we can concatenate tree lists in time O(1).

 Cost of a meld: O(1).
 Cost of an enqueue: O(1).
« If it sounds too good to be true, it probably is.

3 @@@@@@
4 8 9

Lazy Melding

 Imagine that we implement exiract-min the same
way as before:

* Find the packet with the minimum.
 “Fracture” that packet to expose smaller packets.
 Meld those packets back in with the master list.

« What happens if we do this with lazy melding?

@@@ 9 3 4

Each pass of finding the
minimum value takes time
O®(n) in the worst case.

We’ve lost our nice
runtime guarantees!

Washing the Dishes

 Every meld (and enqueue) creates some “dirty dishes”
(small trees) that we need to clean up later.

* If we never clean them up, then our extract-min will be
too slow to be usable.

* Idea: Change extract-min to “wash the dishes” and make
things look nice and pretty again.

* Question: What does “wash the dishes” mean here?

@@ 9 3 4
8 8

Washing the Dishes

 With our eager meld (and enqueue) strategy, our priority
queue never had more than one tree of each order.

* This kept the number of trees low, which is why each

operation was so fast.

» Idea: After doing an extract-min, do a coalesce step to
ensure there’s at most one tree of each order. This gets us to
where we would be if we had been doing cleanup as we go.

4
47 9
6 5 8
8

At this point, the mess is
cleaned up, and we’re
left with what we would
have had if we had been
cleaning up as we go.

Where We’re Going

* A lazy binomial heap is a binomial heap, modified
as follows:

 The meld operation is lazy. It just combines the two
groups of trees together.

« After doing an extract-min, we do a coalesce to combine
together trees until there’s at most one tree of each order.

 Intuitively, we’d expect this to amortize away nicely,
since the “mess” left by meld gets cleaned up later
on by a future extract-min.

* Questions left to answer:

 How do we efficiently implement the coalesce operation?
« How efficient is this approach, in an amortized sense?

Coalescing Trees

 The coalesce step repeatedly combines
trees together until there’s at most one
tree of each order.

« How do we implement this so that it runs
quickly?

@@@@g@

Coalescing Trees

 Observation: This would be a lot easier
to do if all the trees were sorted by size.

 We can sort our group of t trees by size
in time O(t log t) using a standard sorting
algorithm.

 Better idea: All the sizes are small
integers. Use counting sort!

Coalescing Trees

 Here is a fast implementation of coalesce:

» Distribute the trees into an array of buckets big enough
to hold trees of orders O, 1, 2, ..., [logz (n + 1)].

« Start at bucket 0. While there’s two or more trees in the
bucket, fuse them and place the result one bucket
higher.

Order 3 Order 2 Order 1 Order O

|
@@ 1 4 5
4 3 5
4

 Here is a fast implementation of coalesce:

Coalescing Trees

» Distribute the trees into an array of buckets big enough

to hold trees of orders O, 1, 2, ..., [logz (n + 1)].

 Start at bucket 0. While there’s two or more trees in the
bucket, fuse them and place the result one bucket

higher.

Order 3

Order 2

Order 1

Order O

4 5
6 7

 Here is a fast implementation of coalesce:

Coalescing Trees

» Distribute the trees into an array of buckets big enough

to hold trees of orders O, 1, 2, ..., [logz (n + 1)].

 Start at bucket 0. While there’s two or more trees in the
bucket, fuse them and place the result one bucket

higher.

Order 3

Order 2

Order 1

Order O

4
6

Analyzing Coalesce

 How much time does it take to coalesce a
group of t trees?

 Time to create the array of buckets: O(log n).
 Time to distribute trees into buckets: O(t).

* Time to fuse trees: O(t + log n)

- Number of fuses is O(t), since each fuse decreases
the number of trees by one. Cost per fuse is O(1).

- Need to iterate across O(log n) buckets.

» Total work done: O(t + log n).
 In the worst case, this is O(n).

The Story So Far

* A binomial heap with lazy melding has these
worst-case time bounds:

 enqueue: O(1)

« meld: O(1)

o find-min: O(1)

e extract-min: O(n).

* But these are worst-case time bounds. Intuitively,
things should nicely amortize away.

 The number of trees grows slowly (one per enqueue).

 The number of trees drops quickly (at most one tree
per order) after an extract-min).

An Amortized Analysis

» This is a great spot to use an amortized analysis
by defining a potential function ®.

* In each case, the idea is to clearly mark what
“messes” we need to clean up.

 In our case, each tree is a “mess,” since our
future coalesce operation has to clean it up.

3 7 5 1 2 3 4

6 4 8
8

Set ® to the number of trees in
the lazy binomial heap.

An Amortized Analysis

 Recall: We assign amortized costs as
amortized-cost = real-cost + k - A®,
where AD = (I)aﬁ:er - (I)before-

* Increasing ® (adding more trees) artificially boosts costs.
* Decreasing ® (removing trees) artificially lowers costs.

» Let’s work out the amortized costs of each operation on a
lazy binomial heap.

3 C?@@@@@
4 8

Analyzing an Insertion

* To enqueue a key, we add a new binomial tree
to the forest.

« Real cost: O(1). AdD: +1
« Amortized cost: O(1).

@@

Analyzing a Meld

What is the amortized cost of meld?
The real cost is O(1).
What’'s AD?

That’s trickier - there are two separate
collections of trees here.

@@%@@

Analyzing a Meld

e What is the amortized cost of meld?

« Common trick: When working with mergeable
data structures, define ® globally across all
instances of the data structure.

e Now A® = 0 and the amortized cost is O(1).

@@%@@

Set ® to the number of trees in
all lazy binomial heaps.

Analyzing extract-min

Find tree with
minimum Kkey,.

Work: O(t)

A A © =t

7 I Remove min.
Add children to
list of trees.

A Work: O(log n)

Run the coalesce
algorithm.

Work: O(t + log n)
® = O(log n)

Work: O(t + log n) AD: O(-t + log n)

The Final Scorecard

e Here’s the final
scorecard for our
lazy binomial heap.

 These are great

runtimes! We can’t

improve upon this

except by making

extract-min worst-

case efficient.

« This is possible!
Check out
bootstrapped skew

binomial heaps for
details!

Lazy Binomial Heap

e Insert: O(1)

o Find-Min: O(1)
 Extract-Min: O(log n)*
« Meld: O(1)

* amortized

Major Ideas from Today

* [sometries are a great way to design data
structures.

 Here, binomial heaps come from binary
arithmetic.

* Designing for amortized etficiency is
about building up messes slowly and
rapidly cleaning them up.
 Each individual enqueue isn’t too bad, and a

single extract-min fixes all the prior
problems.

Next Time

« The Need for decrease-key

* A powertful and versatile operation on
priority queues.

 Fibonacci Heaps

* A variation on lazy binomial heaps with
efficient decrease-key.

 Analyzing Fibonacci Heaps

* A clever analysis.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

